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ABSTRACT 

The purpose of this project was to help evaluate data obtained from an ion gage 
flown' on board the OV1-15 satellite. The aerodynamic molecular beam facility was 
modified to produce a molecular beam with a S-in.-diam test core. This system was used 
to determine the effects of a changing angle of attack on the pressure reading in a hot 
cathode magnetron ionization gage. Static calibrations were made for various orientations 
of the gage to the beam flow. Dynamic calibrations were made with the gage rotating in 
the beam flow at approximately 2 rpm. A comparison of static and dynamic profiles 
showed no detectable differences, thus indicating negligible sorption effects within the 
gage. The sensitivity factor for the gage was determined by calibrating the gage in a 
vacuum system where the random gas pressure could be controlled and set at known 
values. A matrix of correction factors wasTprepared which may be used to adjust the 
observed gage reading at a known attitude and azimuth angle to that pressure which 
would have been observed with the same molecular flux and the gage at 0-deg attitude 
and 0-deg azimuth. 

iii 
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SECTION I 
INTRODUCTION 

The purpose of this project was to help evaluate data obtained from an ion gage 
flown on board the OV1-15 satellite. The OV1-1S experiments were to determine the 
cause of the large and sudden fluctuations observed in Air Force satellite trajectories, 
with the ultimate goal of being able to predict the occurrence and magnitude of such 
fluctuations. The CRL ion gage was one of the experimental packages on board and was 
used to measure atmospheric density. The gage as mounted in the satellite is shown in 
Fig. 1, Appendix. Once in orbit the satellite was spin-stabilized and rotated about the 
axis noted in Fig. 1. Subsequent ground-based observations indicated that the spin axis 
was not normal to the flight vector. Thus the resulting precession of the spin axis about 
the flight vector lead to a complex variation in aspect angle or angle of attack of the 
pressure gage to the gas flux. Had the satellite been inserted in orbit as planned, each 
revolution of the satellite would have yielded one data point where the gage was looking 
directly ahead into the flow stream. Since the spin rate was sufficiently rapid these data 
points would have been adequate to map the atmospheric density without large 
discontinuities. However, because of the complex motion of the gage on the actual flight 
there were long periods of time when the gage did not look directly ahead but only 
reached a minimum aspect angle before regressing. It was therefore necessary to find a 
suitable correction factor which could be applied to the pressure readings transmitted by 
the pressure gage which would correct for the angle of attack. A theoretical paper prepared 
by Hughes at the University of Toronto (Ref. 1) provides a basis for calculating this 
correction factor. His analysis considers a tubulated gage immersed in a flow field. An 
equilibrium pressure in the gage will be reached when the rate of flow of molecules into 
the gage equals the rate of molecules flowing out. Since these two rates are influenced 
by the dimensions and angle of attack of the tubulation, the problem becomes one of 
predicting the effects of directed versus random flow down tubes. Several assumptions 
are made in the analysis. Included among these assumptions are that: 

1. The flows are free molecular and thus the incoming flux does not interact 
with the exiting flux. 

2. The gage volume is large compared to the dimensions of the tube. 

3. The directed flow accommodates to the tubulation temperature upon first 
impact and is subsequently reflected with a cosine distribution. 

4. There is no outgassing or sorption in the gage (i.e., no sources or sinks) 

5. The entrance to the gage is a well-defined circular tube. 

For the satellite gage, assumptions (1) and (2) are valid. Assumption (3) is questionable 
because of evidences of specular reflections by high energy molecules from engineering 
surfaces (Ref. 2). Assumption (4) is also suspect because the gage is constructed of titanium 
and ceramic and numerous investigators have reported on the sorption of nitrogen by 
titanium. The fifth assumption is obviously invalid since the gage entrance is not a circular 
tube but consists of ion deflection plates and a cap opening device (Fig. 2). 
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In order to evaluate the operation of this gage when rotating in a molecular flow 
field, the following tests were defined. The objective was to provide a molecular flux 
which would simulate the density range in the upper atmosphere and mount the gage 
in a suitable mechanism so that it could be rotated to simulate the motions of the satellite. 

The test program was divided into four phases: 

1. Produce a molecular beam having a speed ratio' of S = 10 with a uniform 
test core approximately 5 in. in diameter. 

2. Build a suitable gage movement mechanism and evaluate its performance 
with a dummy glass envelope gage. 

3. Install the CRL test gage and obtain data consisting of gage reading as 
a function of aspect angle for both dynamic and static conditions. 

4. Calibrate the CRL test gage in a vacuum chamber with random gas influx. 

SECTION II 
APPARATUS 

The tests were conducted in two test cells: the Aerodynamic Molecular Beam Chamber 
and the 2- x 3-ft Research Vacuum Chamber. 

The Aerodynamic Molecular Beam Chamber is shown in Fig. 3 and described in Ref. 
3. It was modified for these test by substituting a cryogenically cooled skimmer with 
a 1-in. orifice for the nominal 4-mm conical skimmer and enlarging the collimating orifice 
from its nominal 8-mm diameter to 4-in. diameter. These changes produced a molecular 
beam with a useable test core of approximately 5 in. A small ionization gage with the 
opening reduced to a 4-mm-diam orifice was mounted on a remotely controlled traverse 
and used to map the flow field through the test core of the beam. The gas source, which 
is normally a resistance-heated tube, was replaced with a tuneable microwave cavity with 
a thin-walled orifice. The cavity operated as the gas plenum, and the aerodynamic beam 
was skimmed from the gas jet as it expanded from the thin-wall orifice. 

2.1    GAGE MOUNTING SYSTEM 

The test gage was mounted in a specially prepared movement mechanism shown in 
Fig. 4. The front face of the cannister enclosure was built to conform as closely as possible 
to the hardware that surrounded the flight gage on the satellite. This cannister was then 
suitably counterbalanced and pivoted so that it could be rotated in both the horizontal 
and vertical planes. The pivot point chosen was in the center of the gage opening. This 
assured that regardless of the aspect angle the gage opening stayed in a region of constant 
molecular flux. Two gear-head motors were installed to operate the pivot mechanisms. 
Potentiometers coupled to the pivot shafts were used to provide a remote readout of 
the gage orientation. 
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2.2    CALIBRATION CHAMBER 

Sensitivity calibrations of the test gage were conducted in the vacuum system shown 
in Fig. 5. This chamber is used for gage calibration and gage comparison studies. It is 
equipped with a calibrated gas addition system. A full description of the chamber and 
methods of gage calibration may be found in Ref. 4. 

SECTION  III 
EXPERIMENTAL PROCEDURES 

3.1 PRODUCTION OF MOLECULAR  BEAM 

The present state of the art precludes providing a molecular beam of sufficient 
intensity with velocities of 8 km/sec and static temperatures of approximately 1500°K 
(speed ratio (S) = 10). However, since the purpose of the test series was to measure the 
effect of angle of attack on the pressure gage reading and theoretical analysis indicates 
that this is a function of the speed ratio, the beam conditions were tailored to provide 
the appropriate molecular flux with a lower velocity and static temperature which still 
produced a speed ratio of 10. Previous calibrations of molecular beams in this facility 
(Ref. 5) using time-of-flight techniques to determine molecular velocities and velocity 
distributions were used to define the required source conditions. For nitrogen gas a source 
pressure of 13 mm of mercury (Hg) and a temperature of 300°K was used. The expanding 
gas from this source was skimmed by a 20°K gaseous-helium (GHe>cooled donut. The 
core which passed through the center of the donut was further collimated by a 4-in, 
orifice located 18 in. downstream. The profile of the resulting beam is shown in Fig. 
6. These data have been normalized to the maximum pressure recorded by the small orifice 
probe used to survey the beam (2.1 x 10~5 torr). Because of the large cross section of 
the beam and the resulting quantity of gas, the background pressure in the test section 
of the cell rose from its normal 5 x 10"8 torr to 7 x 10"7 torr. 

Since a possible perturbation of satellite data could have been produced by atomic 
oxygen in the upper atmosphere, an attempt was made to produce a beam which consisted 
of molecular and atomic oxygen. The microwave cavity which served as a gas source plenum 
is shown in Fig. 7. The system was installed in the test section and a beam of oxygen 
was produced. Comparisons of the spectra taken with the microwave cavity on and with 
it off produced results which were inconclusive. The increased noise levels of spectra taken 
with the cavity on, plus a slowly declining sensitivity of the mass spectrometer attributable 
to the oxygen, masked the increase, if any, in the mass 16 peak. 

3.2 INSTALLATION OF MOVEMENT MECHANISM AND CHECKOUT 

As previously noted, the movement mechanism was constructed to duplicate as near 
as possible the surrounding hardware of the flight gage installed in the satellite. 

In order to evaluate the movement mechanisms under vacuum conditions and, even 
more, to investigate possible noise induced into gage readings because of the operation 
of the DC drive motors, a small glass envelope gage was fitted with an entrance aperture 
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to approximate the CRL gage and mounted in the system. A series of test runs was made 
with this system, and several modifications in gearing and electrical lead routings were 
made. Data from these runs in the form of pressure reading versus aspect angle were 
recorded. 

3.3    INSTALLATION AND TEST OF CRL GAGE 

The CRL gage was installed in the movement mechanism and its electronics package 
located on a shelf inside the vacuum system. Outputs from the electronics package were 
brought out of the vacuum system and connected to a strip-chart recorder. The 
recommended electrial checkout procedure for the CRL gage was conducted before the 
cell was closed up and evacuated (Ref. 6). 

When the cell had reached test conditions (3 x 10"8 torr) the remote movement 
mechanism was operated to ensure that no cables were binding. At this point 28 v was 
applied to the explosive squibs which were to deploy the gage cap. Neither squib fired 
with the 28-v supply. A tesla coil was connected in parallel with the supply and both 
squibs fired and deployed the cap. The power supply to the CRL gage was turned on 
and the filament inside the gage heated up, but there was no gage output. Electrical checks 
indicated that there was a short circuit in the 300-v anode supply somewhere inside the 
cell. Attempts to relieve the short by manipulating the gage movement mechanism were 
unsuccessful. The cell was returned to atmospheric pressure with argon. A purge of argon 
was kept on the CRL gage while the electrical short was traced. No definite short circuit 
was located since during the continuity checks the short disappeared. However numerous 
small cuts were observed in the rubber insulation covering the high voltage lead. A new 
wiring harness was made using Teflon®-covered wire and the electronics package was 
removed from inside the vacuum cell and relocated outside. The cell was again closed 
and returned to test conditions. During the electrical checkout procedure of the gage it 
was noted that the gage sensitivity was lower than normal. This was traced to below-nominal 
voltages supplied by the electronics package. Since an examination of the electronics 
indicated that it was not feasible to correct the problem in the test time available, and 
it was decided that the loss in sensitivity would not seriously impair the results of the 
test, a record of the actual operating voltages was made and the test schedule was started. 

The test sequence consisted of establishing the molecular beam and checking its 
intensity with the chamber instrumentation (survey ion gage probe). The CRL gage was 
then adjusted to zero azimuth and rotated stepwise through 360-deg attitude. At each 
step the gage was stopped and allowed to come to equilibrium. 

The next tests were dynamic and consisted of remotely setting the gage movement 
mechanism to a specific azimuth angle and then rotating the gage through ±360-deg attitude 
at approximately 2 rpm. The gage output was recorded continuously during this rotational 
period. Azimuth angles were varied from -40 to 80 deg in 10-deg intervals. One sample 
of data for 0-deg attitude was recorded on a strip chart and is reproduced in Fig. 8. 
A complete record of the test schedule is reproduced in Table I. 
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TABLE 1 
TEST SCHEDULE 

Run Time Forepressure Gas Azimuth.deg 

1 8:55 19 N2 0 
2 9:05 0 
3 9:08 10 
4 9:25 20 
'5 9:27 30 
6 9:32 40 
7 9:35 50 
8 9:38 60 
9 9:41 - 70 

10 9:42 80 
11 9:45 -10 
12 9:48 -20 
13 9:50 -30 
14 9:52 ■ 

1 
-40 

15 10:11 15 0 
16 10:22 10 

1 
i 0 

17 10:50 20 AT 0 

18 11:13 10.5 o2 0 

19 11:24 1 0.5 0 0 

Comments 

Static Tests -180 to 180 deg 
Dynamic Tests   4 cycles 
Dynamic Tests   4 cycles 
Dynamic Tests    2 cycles 

20 11:45 18.7 N2 

16.2 sec/revolution 

GE gage 1 x 10-5/2 x 10-7 
GE gage 5.8 x 10-6/1.4 x  10-7 
4 cycles GE gage 3.7 x 10-5/ 

4.6 x 10-7 
4 cycles GE gage 5.5 x  10-6/ 

1.5 x  10-7 
microwave on (no cooling water) 

GE gage 5.5 x 10-6/ 
1.5 x 10-7 

4 cycle 10 sec/rev GE 
1.4 x 10-s 

3.4    GAGE STATIC CALIBRATION 

The CRL gage was removed from the aerodynamic molecular beam test cell and 
installed in the calibration chamber. All the time it was at atmospheric pressure it was 
sealed in an atmosphere of argon. The calibration tests were conducted with the electronics 
package providing the same voltages to the gage that it did during the dynamic tests (viz, 
anode 285v, bias -38v, screen -lOv, and emission 0.2v). The calibration procedure consisted 
of pumping the chamber to its base pressure (1 x 10"8 torr for these tests), then establishing 
a known flow of the test gas into the system. After the equilibrium pressure was established 
(i.e., balance between gas flowing in and gas being removed by the chamber pumping 
system), the chamber pumping system was valved off and the rate of pressure rise in 
the system was recorded by the CRL gage. Data for various rates of gas additions were 
recorded. This process was repeated using nitrogen, argon, and oxygen as the test gases. 

The gage calibration factors were determined using the following analysis. From the 
ideal-gas law 

dP0 dn 
V-A- = — RT P°dT + 

dt dt 
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For this gas addition system dn/dt RT represents a known gas addition rate and can be 
represented by dn/dt RT = PfK where Pf is the forepressure on the gas addition system 
and can be measured directly with a calibrated bourdon-tube pressure gage and K is the 
conductance of a previously calibrated leak (see Ref. 4 for leak calibration procedure). 
Thus the equation of mass balance may be written as 

dV dP_ 
P0   — + V—^- = PfK 

dt dt 

If the pumping system is valved off then 

and 

V^=- = PfK 
dt 

Since the volume of the system can be measured accurately and PfK is known, then 
P0 may be replaced by alg, where a is a calibration factor and Ig is the gage reading, 
and the equation rearranged to solve for a. 

Pf        K 
dlg/dt     V 

If several values of Pf are used and a plot of Pf versus dlg/dt made, then the slope 
of this line may be used to determine a value of a. Calibration values were determined 
for nitrogen, argon, and oxygen. 

If during calibration the gas temperature is T0 and the gage temperature isTg, then 
the actual pressure in the gage Pg is related to the chamber pressure by 

Pg Po 

VT,        v'To 

Since the chamber pressure is related to the gage output by the calibration factor a, then 
the pressure in the gage itself is related to its reading by 

pg = 
*# 

If this gage is now located in such an environment that its temperature changes to Tg1, 
then its new pressure will be 

P.1 = P.   1^ g \H7 

or 

Pg1 = «Ig 
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When the gage is located in the flow field the number of molecules entering the gage 
is 

"in   =   tfvAk1 

where 

p = molecular density 

v = relative gage velocity 

A = area of gage orifice 

k1 = conductance of tubulation for directed flow 

If all the gas accommodates to the gage temperature it will become randomized and the 
number of gas molecules exiting can be determined from a rate-of-strike calculation. 

noul 
3.513 x 1022 Pg1 A k 

v4 MT g 

where 

Pg1   =      gage pressure (in torr) 

Tg1  =     gage temperature 

M     =      molecular weight of gas 

k      =      conductance of tubulation for random flow 

Thus for equilibrium conditions since 
nin   =   "out 

then 

. 3.513 x 1022 P.1 A k 
PvAk1   =  —^  

VMTg1 

The pressure in the gage can be related to the gage output by the previously developed 
calibration relationship and 

pv = 
3.513 x 1022 a Ig    k 

VMT7 k1 

It should be noted that in calculating the molecular flux the calibration temperature 
rather than the actual flight gage temperature should be used. The values of k1 are a 
function of the velocity of the probe as well as the geometry of the gage tubulation 
whereas the value of k is only a function of the geometry of the tubulation. For large 
values of D/K where the gage entrance approximates an orifice, then k1 = k = 1. An 
estimate of the value of k/k1 for the satellite conditions may be taken from the Hughes 
report (Ref.  1). These calculations estimate k/k1  ** 0.5. 
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SECTION  IV 
RESULTS 

Data from the tests in Section 3.2 are shown in Fig. 9. As noted previously, these 
data were recorded from a GE glass envelope miniature ionization gage, which was installed 
in the movement mechanism during the checkout portion of the tests. 

The CRL gage data were reduced to pressure readings by using the appropriate 
calibration curves and then plotted with pressure as a function of angle. These curves 
are reproduced in Fig. 10. Since data reported in Figs. I Ob through i were taken with 
a constant molecular beam flux, then by normalizing to the maximum reading (0-deg 
•azimuth and 4-deg attitude, Fig. 10b) a matrix can be formed where each element is 
defined as the fraction of maximum signal intensity. This matrix is shown in Fig. 11. 

4.1    DISCUSSION 

The following conclusions are drawn from observations of the operation of the test 
gage and the data obtained as well as a limited analysis of some of the flight data from 
the OV1-15 satellite. 

4.1.1 Calibration 

First it should be noted that during these tests the sensitivity of the CRL gage was 
down by over two orders of magnitude. It is felt that this was caused by the lower voltages 
supplied by the electronics package. Since the shape of the low sensitivity calibration 
curve is similar to the curve supplied by the gage manufacturer and is displaced parallel 
to it on a log-log plot, then the resulting pressure profile data from these tests should 
be comparable to flight data. These sensitivity calibrations, however, should not be used 
with satellite data. 

4.1.2 Sorption 

One concern in interpreting the satellite pressure profiles was the possibility of 
sorption by the gage. If there was appreciable sorption this would result in a saturation 
when the gage was facing forward and at its highest pressure level, and then a desorption 
as the gage rotated to face rearward. This desorbing gas would thus act as a gas source 
and add to the gas pressure and distort the "true" pressure reading. When the gage was 
rotating from a rearward to a forward position the sorbing surfaces would act as a pump, 
thus lowering the gage pressure. For a gage having appreciable sorption the total effect 
during each revolution would be to skew the pressure profile. The satellite data and the 
test data both show asymmetrical profiles. However, it is not felt that sorption is the 
cause of this asymmetry for the following reasons: 

1. The pressure profiles taken by the glass envelope gage and the 
titanium-ceramic CRL gage are the same, and there is no experimental 
evidence to suspect appreciable sorption of nitrogen by Pyrex® glass. 
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2. The static profile and the dynamic profiles taken with the CRL gage are 
identical, and sufficient time was allowed during the static cycle for the 
gage to equilibrate at each point. 

3. The dynamic tests consisted of rotating the gage both clockwise and 
counterclockwise. These data are identical, indicating that for any specific 
angle each data point is the same, regardless of whether the gage approached 
it from a high or a low pressure reading. 

The more obvious cause for asymmetry is found in the gage orifice. Two results 
would indicate this as the main cause: 

1. The orifice is asymmetric about the azimuthal plane, and data for constant 
azimuth and varying attitude are also asymmetric. 

2. The gage orifice is symmetric about the attitude plane, and data for changing 
azimuth angle and constant attitude are also symmetric. 

4.1.3 Aspect Angle Correction Factor t 

Because the azimuth and attitude profiles are not identical, then any angle of attack 
must be defined by the appropriate azimuth and attitude angles before the proper angle 
correction factor can be chosen from the matrix presented as Fig. 11. Unfortunately, 
there is no unique combination of azimuth and attitude angle for any particular aspect 
angle (or angle of attack) of the gage. The importance of this fact can be noted by 
comparing Figs. 12, 13, and 14. Figure 12 is a profile recorded in the azimuthal plane 
(a " constant) and attitude varying Q3 = ±60 deg). Figure 13 is a profile recorded in 
the attitude plane (j3 = constant), and azimuth varying (a = ±60 deg). Figure 14 is a 
measured profile where the aspect angle y varies and is defined as 

cosy  =  cos a  cos  ß 

All three of these profiles sweep through the same range of aspect angles and are 
taken with the same beam flux, yet it is quite evident that they describe quite different 
pressure profiles. 

4.1.4 Theoretically Predicted Aspect Angle Correction Factor 

A theoretical study of probes operating in the free-molecular regime was conducted 
at the University of Toronto by Hughes (Ref. 1). From this study a plot of the expected 
gage readings for a tubulated ion gage rotating in a molecular flow field can be provided. 
The dimensions of the CRL gage orifice are shown in Fig. 15. From these dimensions 
a value of D (diameter-to-length ratio) is calculated. Since the geometry is not a simple 
tube there must be some reservations attached to the value used for these comparisons. 

Figure 16a is a plot of predicted gage reading (normalized to 2.9 x 10-5 torr) using 
values of S = 10, D = 0.75, and a varying from -90 to 90 deg. Figures 16b and c illustrate 
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the predicted narrowing of the pressure profile as various tubulations (D ratios) are 
considered. 

A comparison of Figs. 12 and 16a indicates that there is fairly good agreement between 
the measured and predicted profile for this orientation of the gage. For this particular 
comparison the tubulation factor (D = 0.75) ignores the effects of the negative ion 
deflection plates and only considers the circular tubulation of the gage. By appropriate 
choices of this tubulation factor, the theoretically predicted pressures can be matched 
to other measured profiles (compare Figs. 14 and 16b). However, there seems to be little 
profit in this exercise since there are no logical rules to convert the complex entrance 
geometry of the actual gage into an equivalent tube diameter-to-length ratio. 

4.1.5    General Comments 

There are several general observations which may be made after examining some of 
the semireduced orbital data and comparing it to the ground test data. 

1.     The satellite pressure profile for the limited data examined, where the 
minimum aspect angle approaches zero, is in general narrower than that 

v predicted by the Hughes report. From theoretical considerations errors in 
the value of the speed ratio attributable to uncertainties in the upper 
atmospheric temperature should have very little effect on the general shape 
of the profile (Figs. 16a, d, and e). Specular rather than diffuse reflections 
on the Walls of the gage entrance should broaden rather than narrow the 
profile. Combinations of azimuth and attitude angles as shown in the ground 
test data can be chosen to match the flight pressure profiles. However, 
there is no assurance that these are indeed the actual orientations of the 
gage during the particular rotations considered. 

■ 2. On several occasions during calibration the gage output started to oscillate. 
No apparent cause could be determined and the parasitic oscillations stopped 
as unpredictably as they started. Evidence of similar oscillations is apparent 
in the satellite data (Fig. 17). It is suggested that such oscillations in the 
satellite data are not necessarily evidence *of gage encounters with ion 
showers or spurious electromagnetic disturbance in the upper atmosphere. 

3. Occasionally, the reduced data indicated a failure to switch ranges during 
a pressure fluctuation. In most cases this was traced to a data reduction 
problem and a failure of the computer to catch the range shift. However, 
during rate of pressure rise measurements for calibration purposes it was 
noted that it is possible for the gage to obviously change scales without 
indicating a range shift. 

4. The several inversions of parts of the pressure profiles recorded on earlier 
data reductions were all traced to computer problems. 

10 
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SECTION V 
CONCLUSIONS 

From these studies it may be concluded that the basic approach of the theoretical 
analysis is sound; however, the complex entrance geometry of this particular gage leads 
to considerable doubt as to what effective tubulation (D) ratio should be used for a 
particular aspect angle. The matrix determined from these tests should be applicable to 
satellite data: however, since the chamber background pressure is becoming a major 
contributor to gage pressures at angles beyond ±60 deg, it is suggested that these factors 
be used only within these limits. Because of the asymmetry in the matrix it will be necessary 
to define both the attitude and azimuth angle for each aspect angle recorded in the satellite 
data in order to choose the appropriate correction factor. 

During these tests there were no indications of sorption or desorption problems with 
the gage. Spurious oscillations in the gage output were observed, but it was not determined 
if these were attributable to discharges within the gage or were produced in the electronics 
package. 
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